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HIGH TEMPERATURE EQUATION OF STATE FOR ALUMINUM ' 
BY 

R.  J. Naumann 

SUMMARY 

An equation of state is developed that is capable 
of describing metallic elements in both solid and 
liquid phase from ambient temperature and pressures 
to states of extreme temperature and pressure. A 
novel technique for treating the atomic vibrational 
contributions is introduced by assuming each atom 
vibrates independently in a tan' potential. The 
Schroedinger equation can be solved exactly for this 
potential function, and the quantum mechanical parti- 
tion function is computed directly. 
a continuous, thermodynamically consistent descrip- 
tion of metals i s  obtained which reduces to an 
Einstein solid at moderate temperatures and to an 
ideal gas in the limits of high temperatures and/or 
large volumes. 

In this manner 

Detailed numerical computations a r e  carried out 
for aluminum. All the constants required to 
configure the model a r e  obtainable from elementary 
thermodynamic data at ambient conditions. Excellent 
agreement i s  obtained with experimental shock 
compression data on solid and porous samples at 
pressures to 5 Mb and temperatures to 25 000°K. 

INTRODUCTION 

Substantial progress has been made in recent 
years in understanding the behavior of metals at 
extreme temperatures and pressures. Shock com- 
pression techniques have achieved pressure measure- 
ments to approximately 10 Mb and temperatures of 
tens of thousands degrees [ I ] .  At the lower pres- 
sures,  the Debye or  Einstein model for energy and 
the Mie-Gruneisen equation for pressure is adequate 
and zero-degree isotherms were extracted from shock 
measurements by using these relations to  subtract out 

the thermal contributions. It was found that a Morse 
potential predicted the zero-degree isotherms to a 
fair  degree of accuracy [2] ,  which confirmed an 
earlier suggestion by Slater [3]. 

A s  experimental pressures and temperatures 
increased, various inadequacies in the theory became 
evident. Electronic contributions were introduced. 
For compressible metals, anharmonic terms became 
significant. These were treated by Al'tshuler et al. 
using the free volume theory of Lennard-Jones and 
Devonshire [ 41 . Pastine [ 51 usetl the perturbation 
method of Liebfried and Ludwig [ 61 to correct for 
anharmonic effects. 

For the high-temperature states reached by 
shocking porous samples, it was found that the 
behavior became more ideal gas-like. Kormer 171 
proposes a set of empirical interpolation equations 
to transform solid-like behavior of energy, pressure, 
and heat capacity to the ideal gas relations. Urlin [ 81 
proposed an empirical free energy function to 
account for phase transitions. All of these empirical 
relations require adjustable constants which a re  
evaluated from experimental high-pressure data. 
Furthermore, there is no guarantee of thermody- 
namic consistency between them'. 

An equation of state for metals is developed in 
this work th@t i s  capable of describing the liquid-dense 
vapor phase 'as well as the solid phase from ambient 
conditions to temperatures and pressures exceeding 
the present experimental range. Rather than use in- 
terpolation equations to transform the behavior of a 
solid to that of a gas a t  high temperatures o r  at low 
densities, the approach will be $0 start with empirical# 
interatomic potential functions and develop the entire 
equation of state using quantum statistical mechanics. 
The only empirical constants required are obtainable 
from elementary thermodynamic quantities such as 

I. This report was based on work submitted in  partial fulfillment of the requirements for the degree of 
Doctor of Philosophy in  the Department of Physics in the Graduate School of the University of Alabama. 

2. Kormer's  pressure, energy, and heat capacity were chosen in such a manner to be consistent among 
themselves. 
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heat of vaporization, compressibility, entropy, etc. 
In this manner the behavior of a metal thoughout the 
entire high-pressure, high-temperature regime can be 
predicted from its properties a t  ambient conditions. 
Since all the thermodynamic properties a r e  derived 
from the partial function, thermodynamic consistency 
is guaranteed. This allows a complete thermodynamic 
description , so that phase transitions a re  described 
naturally from Gibbs energy considerations. 

FORMULATION 

It will be assumed that the Helmholtz energy can 
be expressed as  the sum of three independent 
contributions: the lattice term,  F the ionic 

vibration term, F , and the free electronic term,  F 

Since all thermodynamic functions a r e  derivable 
from the Helmholtz energy, it immediately follows 
that they all can be expressed a s  sums of these three 
contributions. The fact that there a r e  interactions 
between the free electrons and the lattice will be 
accounted for by introducing an effective electron 
mass. 

k’ 

V e ’  

Lattice Terms 

Since the Morse potential has been found to be a 
reasonable empirical representation for the lattice 
energy of a metallic solid, the Helmholtz energy 
for the zero-degree lattice is written 

where L i s  the zero-degree heat of vaporization, 

o r  total Gnding energy, 5 = (V/V ) 

empirical constant determined from the compres- 
sibility. From the relation F = E - TS, the internal 
energy, Ek, of the zero-degree lattice i s  identical to 

Fk. The zero-degree isotherm is  found from the 

and b i s  an 

relation 

and is 

Vibrat ional  Terms 

At moderate temperatures, the ionic vibrational 
contributions may be computed from the assumption 
that the ions behave as  harmonic oscillators. This 
assumption leads to the Einstein model, in which i t  is 
assumed that all atoms vibrate independently at the 
same frequency, o r  to the Debye model which considers 
a distribution of normal mode frequencies. At very 
high temperatures, the vibrational amplitudes a re  
such that nonlinear restoring forces must be con- 
sidered. This i s  accounted for by assuming each atom 
vibrates independently3 in a potential well given by 

( 3 )  

When the displacement x is small compared to the 
atomic spacing a, the potential reduces to 

d e r e  WE is the Einstein frequency. 

oscillator, w2 = K/m, therefore, equation (4) has the 
form 1/2 & where K is the spring constant 
corresponding to the Einstein frequency. 

For a harmonic 

At larger displacements, xe*a ,  the potential 
approaches infinity which describes a hard sphere 
collision between point masses. This roughly cor- 
responds to nuclear collisions between neighboring 
atoms whose position expectation values a re  +a.  

The choice of the tan’ functional representation 
was made because i t  behaves as desired in the limits 

.~ - 
3. The assumption of independent vibration i s  justified because even at moderate temperatures the Einstein 

and Debye models give almost identical results. 
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and also because it allows a closed-form-eigenvalue 
solution to the Schroedinger equation. The energy 
eigenvalues are‘ 

where y is the Gruneisen ratio, -(a In w/a In V) . 
Formulation of y for solids has received extensive 
treatment in the literature. 

H ~ W ;  + E z 0 ) 1 / 2  , 

( 5) 

n 

n = 0,1,2,. . . 
where E is the degeneracy energy ?,lf2 / (8 m a’) . 

The vibrational partition function Z for N 
atoms, each with three degrees of freedom, is 

(D - E,/ kT 
In Z = 3N In e ( 6 )  

n=O 

where k i s  the Boltzmann constant. 

The various thermodynamic functions a re  
obtained from the partition function in the usual 
manner. 

The brackets ( ) denote the ensemble average; eg. ,  

n=O 

At solid densities, Xw >> E and the Boltzmann 

factor reduces to exp [-(nZEo + sw)/kT] . Unless 

kT >> Mw, the BoltZmaM factor will become negligibly 
small at low enough values of n to prevent the n2E 

term from contributing significantly. In this case,  
che Helmholtz energy reduces to 

F = -3NkT’ In f e-dLd/ltT 

n=O 
m ( 14) 

n=O 

-En/kT 
= 3NkT In (1-e -,kfw/kT ) F = -kT In Z = -3NkT In 7 e 2 (7) V 

which is the well-known result from the Einstein 

The Liquid Potential Function 
aE 

The zero-degree potential energy in the liquid 
cw ( +)v = s [<e:> - (en)‘] 2 

(9 )  phase is  represented by and 

Differentiating equation (5), the P contribution 
becomes where L1, B, Em, and El a r e  empirical constants 

peculiar to the liquid phase, and L and b a r e  the 

same a s  in the solid potential, equation ( I )  . This 
’ ( 12) particular form was chosen for the following reasons. 

4. See problem 12 in D. ter Haar, Problems in Quantum Mechanics, Academic Press, New York, 1960. 
Actually, there should be a 1/2 added to n i n  both terms corresponding to the ground state. However, 
the ground state energy is included in  the zero-degree lattice terms; therefore, -it is suppressed in the 
vibrational terms. 

3 



For 5 ti the repulsive term is the same as  in the 
Morse potential, but the attractive term is the form 
resulting from van der Waals forces. This potential 
function cannot be extended to small 5 because 
eventually the attractive term will override the 
repulsive term. To avoid this, the form given for  
5 5 ti  was chosen. This is identical to the Morse 
curve for the solid except that E and 51 have 

been introduced to account for the heat of fusion and 
different compressibility of the liquid phase. 

m 

The pressure is again given by P = - (8F /8V) k k T  and is 

'k 

Of the four additional constants introduced in this 
potential, two are  required to match the F and P 

at 
the observed energy and pressure at the melting 
point5. Figure I compares the liquid potential with 
the Morse potential for aluminum. 

k 
5 = ti. The remaining two are  chosen to produce 

k 

The Liquid Vibrat ional  Component 

The LennardJones Devonshire model of liquid 
and dense vapors treats each atom as though it  were 
moving in a cage of i ts  nearest neighbors which a re  
considered fixed. Since the number of nearest 
neighbors i s  usually 12, a high degree of symmetry 
exists, and a spherically symmetric potential may be 
assumed. Following these concepts, the same form 
of potential function as  assumed for the solid, 
equation ( 3 )  , is used to describe the behavior of an 
atom in such a cage. 

The partition function will be somewhat different 
from equation (6), however, because of particle 

indistinguishability. In the solid phase, particles 
a re ,  in a sense, distinguishable because of their 

definite position in the lattice. In a liquid, particles 
can exchange positions and thereby lose their 
distinguishability. The partition function must be 
adjusted accordingly for "proper Boltzmann counting. " 
Since each atom occupies a cell with volume (2a) [ 3 J , 

N 
a volume containing N atoms spaced a t  average 
distance, a, can have N/8 cells. There a r e  (N/8) 
ways of arranging N particles among N/8 cells, of 
which N! a r e  redundant because of particle indistin- 
guishability. The partition function becomes 

- E  /kT z= - 3N r, e n 

n= 0 
N! 

The Helmholtz energy becomes, using Stirling's 
approximation, 

* -fn/kT 
Fv = NkT (In 8 - I) -3NkT In 7, e 

n=O 

The energy eigenvalues, E a r e  given by n' 
equation (5) ; the internal energy and heat capacity 
a r e  given by equations (8)  and (9 ) ,  respectively, and 
the pressure i s  given by equations ( 10) and ( 12), 
except that the Einstein frequency and the Gruneisen 
ratio will have different values for the liquid. 

It is interesting to examine the behavior of the 
liquid in the limit of large volumes where Hw-0. 
In this limit, the atom moves freely within i ts  "cage." 
Encounters with the wall correspond to eIastic point 
collisions characteristic to an ideal gas. Since 
1T >> E the summations may be replaced with 

integrations and 
0' 

( 19) 
n=O 

The Helmholtz energy becomes 
r 

2 
V 3 F = -NkT -- NkT In 

5. The parameter, t i  , i s  the value of 5 corresponding to minimum potential in the liquid phase. It will 
generally be more than unity because the distribution of the atoms in liquid metals is random instead of the 
more efficient close packing usually associated with crystal lattices. This choice of functional dependence 
was made to assure  P (ti) = 0 and to make the F and P approach the same values as  the solid phase 
a t  small 5. k k k 

4 
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Figure 1. Comparison of solid and liquid potentials. (The liquid potential approaches the solid at high 
compressions, differs by approximately the heat of fusion at V = V and exhibits a van de r  Waals 

0' 

behavior a t  large volumes. ) 

Similarly, the other equations reduce to the ideal gas  

relations, E =- McT, P = =, and 

cW - ~ c .  Using the result of equation ( 2 0 ) ~  the 

relations S = (E-F)/T, and the fact that E = F 

the entropy in this limit becomes 

which is the well-known Sakur-Tetrode equation for 
the entropy of an ideal gas. 2 

v 3  v v  
- -  

At liquid densities, )iw >> E and the treatment 

of the vibrational component of liquids at moderate 
temperature reduces to the Einstein model. However, 
the Einstein frequency and the Gruneisen ratio will be 

k k' 

s = - 5 Nk+ 3 Nk In [s (JL)'/~I, (21) different in the case of a liquid. 
2 

5 



A crude estimate of the vibrational frequency can 
be made by considering an atom at the origin with 
an atom at i a .  The change in potential resulting 
from a displacement x is 

grand partition function, one obtains [ 91 

and 
m 

e312de 
E = g  O e  o / I C T  ’ Using only the repulsive term in the Morse Potential, 

Q(r) = Qoe 
2b( i-r/ao) 

where 

The chemical potential p must be found for  a 
given volume and temperature by a numerical iterative 
solution of equation (27) ,  then equation (28) may be 
integrated to find E .  The pressure is obtained from 

the identity, P V  = - E, which holds for Fermi 

a s  well as  Bose gases. Since, by definition, the 
chemical potential i s  the Gibbs energy per atom, 
G = Np. Using the identity G = F + PV, the electronic 
contribution to the Helmholtz energy may be found. 

For temperatures that a r e  small compared to 

2 
3 

the Fermi temperature, the integral in equation (27) 
may be approximated I 

L 

For small displacements, 

2b( 1-6) 4b2x2 
T- +(x) = 2 Q e 

This has the form of a harmonic oscillator potential 
with a frequency 

(25) 

1 
3 from which y = - b 6.  The w as a function of 

volume can be found from equation (25) and the value 
of w at 6 = I. This can be obtained from entropy 

measurements. In the limit of the Einstein model, 
the entropy becomes 

0 7?k2T2 + . . . .  , ! J = e  - -  F 12 EF 

and equation (28) becomes 

1 
’* -3Nkln (1-e -Kw/kT 

‘= 3m( e w kT- l )  
(30) (26) 

-Nk (In 8 - I) . 
where the Fermi energy cF i s  

Given S and T,  the above expression can be solved 
for  w. 

Figures 2 and 3 show how the vibrational com- 
ponent of heat capacity approaches ideal gas-like 
behavior in the limit of high temperatures or low 
densities. 

The f i rs t  terms in equations (29) and (30) a r e  the 
zero-degree degeneracy energy. This is already 
contained in the lattice terms and will therefore 
be suppressed. The electronic contribution to the 
Helmholtz energy is 

2 Nek2 T2 
F = -  

e €F 

Electron ic  Contr ibut ions 

The electronic terms are  obtained by treating 
the free electrons a s  an ideal Fermi gas. From the 

6 
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Figure 2 .  Behavior of heat capacity for solids and liquids in the high temperature regime. (Breaks 
in the curves represent phase changes.) 

The Fermi energy is computed from the observed 

The Cve is obtained 
electronic heat capacity coefficient which can be 
measured at low temperatures. 

by differentiating equation (30)  , giving 

7? Nk2T 

F 've ( 3 2 )  

At very low temperatures, the electronic terms 
dominate the heat capacity, which is experimentally 
observed to depend linearly on T .  The value of 
cF obtained in this manner will be somewhat different 

from the value obtained from equation ( 3  I) if the 
f ree  electron mass is used for m. This difference 
arises from the interaction of the electrons with the 
lattice. The effective electron mass is defined a s  that 
mass  which makes equation (31) agree with the Fermi 
energy obtained from the experimental heat capacity. 

COM PUTAT I ONAL RES ULTS 

S pec i f  icat ion of Con s ta n t s 

The equation of state developed in the preceding 
section was applied to aluminum. The various 
constants required a r e  obtained in  the following 
manner. 

The zero-degree heat of vaporization L is 

found from tables [ I O ]  to be 86 400 kcallmole. The 
volume a t  0°K is obtained by extrapolation of thermal 
expansion data and is taken to be 2.736 gm/cm3. 
From compressibility data, b is found to be 3.241. 

The Slater relation [ ii] , 
2 i  VP;L/P;Z, where primes denote Y = -  - -  - 

7 
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Figure 3 .  Transition of heat capacity from liquid to gaseous behavior. (The curves indicate the behavior 
of the vibrational component of the liquid phase only, and ignore the liquid-gas coexistence region. ) 

differentiation with respect to V, gives y to within 
a few percent of the experimental value at normal 
density. Because of this agreement the Slater relation 
was used for the calculation for solid aluminum 
despite the objection that i t  assumes a volume 
independent Poisson ratio. In the development of the 
Slater relation, the result 

4/3 p;, (V) 

P;, (V0) w2 E = w20 (e) 
is obtained. Given w the Einstein frequency a t  

Vo, the w 

quantity w is found by comparing the entropy of an 

ideal solid in the Einstein approximation to the 
measured value at low temperature and using the 
Slater relation to correct to V . For solid 

0' 

at any other V can be found. The 
E 

0 

aluminum, the Einstein temperature, 0 = Kw/k was 
found to be 269.38"K. 
entropy in equation (26) is used to find the liquid 
Einstein temperature which is corrected to V 

using equation (25) .  For liquid aluminum, the - 

Einstein temperature was found to be 117.935"K. 

For the liquid phase, the 

The electronic terms for aluminum a re  obtained 
by considering all three valence electrons a s  f ree  and 
by taking the effective mass  to be I .  6 t imes the normal 
electron mass.  This brings the calculated electronic 
heat capacity, equation ( 3 2 ) ,  into agreement with the 
measured value [ 121. 

The constants Li, B, Em, in the liquid 

potential a r e  found in the following manner. At the 
melting volume ratio ( and temperature T , the m m 

8 



energy is Ek( E,) + E, (t,, Tm) + Ee ( C ~ ,  T,) 

which must equal to the energy of the zero-degree 
crystal L plus the heat to meit, which i s  known 

experimentally. All quantities required to compute 
Ev( 6,. T,) and Ee(Em, Tm) have been specified; 

thus, Ek(tm) i s  known. Similarly, 

Pk(tm) + Pv(Em, Tm) + Pe(Cm* Tm) = P a h ;  

therefore, P (5  ) i s  known. Using equations (15) 

and ( 16) for 5 2 El, simultaneous equations 
containing L, and B are  obtained. Their solution 
for aluminum yields ti = 72 53 1 cal/mole, and 
B = 146 397 cal/mole. The quantity El i s  found by 
requiring the two expressions for  P equation ( 16), 

k' 
to be equal at For aluminum, it was found 
that ti = 1.0265. Finally, the requirement that both 
expressions for Ek, 

5 = E l  is used to obtain E 

IC m 

E =  E l .  

equation ( I S ) ,  agree at 

= 2654 cal/mole m 

The Fusion Curve and Equation of 
State Surfaces 

Having specified the various constants for 
aluminum, computations were carried out for  both 
the solid and liquid phase for various values of 5 
and T. Isotherms of a Gibbs energy versus pressure 
plot are  shown in Figure 1. Since the phase that 
produces the lowest Gibbs energy at a given temper- 
ature and pressure is the stable phase, the inter- 
sections of the solid-liquid isotherms represent 
points on the fusion curve (Fig. 5 ) .  
curve, isotherms are  constructed on a P-V surface 
(Fig.  6 ) ,  an E-V surface (Fig. 7) ,  and an S-V 
surface (Fig.  8) . Isoenergy lines on a P-V surface 
a r e  shown in Figure 9. 

Using the fusion 

Comparison with Experimental Resul ts 

To compare the equation of state developed 
in this paper with data obtained from shock com- 
pression experiments, the Hugoniot requirement, 

(33)  
1 E - E  = - P ( V  - V )  , 

0 2  00 

is solved simultaneously with the equation of state. 
In experiments with porous samples, the volume 

PRESSURE (mrgnbnrs) 

Figure 4. Gibbs energy isotherms. ( Circles 
represent the intersection of the liquid and solid 

isotherms and determine the melting pressure for 
that particular temperature. ) 

MELTING CURVE 

I ''--'--I 

TEMPERATURE ( iOf.K) 

Figure 5. Melting curve deduced from Gibbs 
energy plot. 

Voo represents the actual specific volume of the 

sample, whjch may be several times the volume of a 

9 
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Figure 6 .  Pressure  isotherms. (Breaks in the isotherms represent transition from solid 
to liquid phase.) 

normal crystal. The states that can be reached 
by shocking a crystal with initial specific volume 
ratio V must lie along the intersection of 

equation ( 3 3 )  and the equation of s ta te  surface in 
P-V-E space (Fig. 9) . By varying the porosity of 
the sample, any state can, in  principle, be reached 
by shock compression. 

00 

In performing shock compression experiments, 
the observables are  the shock velocity D and the 
material velocity u.  These a r e  related to the 
thermodynamical quantities E, P ,  and V through 
the Hugoniot relations 

Voo (D-u) = VD (conservation of mass) (34) 

PVoo = Du (conservation of momentum) . (35) 

These relations a r e  used to relate the observables 
u and D to the Hugoniot states found by solving 
equation (33) with the equation of state. Figure 10 

compares the predicted results for various porosities 
with measured results summarized in Table i. Very 
good agreement is obtained considering that the 
equation of state constants are  determined solely from 
ambient properties and contain no constants adjusted 
to fit the high-pressure data. The highest pressure 
datum point falls somewhat above the predicted curve 
for liquid aluminum, but is below the curve for solid 
aluminum. The fusion curve clearly indicates that 
melting should have occurred at this state, but the fact 
that the material was shock compressed may have 
prevented the phase transition to become complete in 
the short time involved, and the discrepancy could be 
that the aluminum is behaving a s  a super-heated 
solid. On the other hand, the inaccuracies in the 
model, particularly in the assumption of a Morse 
potential configured from the anibient compressibility, 
could easily account for such a discrepancy a t  
pressures of 5 Mb. 

The reproduction of states on the Hugoniot for 
normal crystal density is not a particularly crucial 
test for an equation of state. The lattice terms a r e  
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Figure 7. Energy isotherms. (Breaks in the 
isotherms represent transitions from solid to 

liquid phase. ) 
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Figure 8. Isotherms on S-V plot. (Breaks in the 
isotherms represent transitions from solid to 

liquid phase. ) 
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Figure 9. Isoenergy lines. (When lines of constant internal energy a r e  plotted rather than lines of constant 
temperature, the phase transitions are not apparent. ) 
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Figure 10. D-u plots comparing computed results 
with experimental data points. (The short dashed 
region on the v /v0 = I curve represents the 

transition region from solid to liquid phase. The 
long dashed curve represents a superheated solid. ) 

the major contributors at all but the highest com- 
pressions, and the fact that the restoring forces 
"stiffen up" at high compressions extends the validity 
of the assumption that the atoms vibrate as  harmonic 
oscillators to high temperatures. Therefore, the 
Einstein o r  Debye Model together with the Mie- 
Gruneisen equation and a properly adjusted zero- 
degree isotherm will give a good representation of 
the normal Hugoniot to several megabars. Addition 
of electronic terms will extend such a model even 
further. However, such models fail for the lower 
compression, higher temperature states obtained by 
shock compressing porous samples. The equation of 
state developed in this work successfully predicts 
these states, as  shown in Figure 10. 

00 

It i s  useful for shock compression work to plot 
various thermodynamic coordinates against material 
velocity u as  a means of expressing the thernio- 
dynamic state attained in a shock process. The 
material velocity i s  particularly useful because it can 

be easily related to the relative velocity of the 
impacting samples. 
for different porosities versus u, and experimental 
points a r e  shown for comparison. 

Figure I1  is a plot of pressure 

Figure 12 is a plot of temperature in the shocked 
region a s  a function of u.  The various datum points 
a re  illustrated not as  a comparison, since measure- 
ment of temperatures were not made, but as  an 
indication of the range of temperatures accessible to 
this technique. The fact that higher temperatures 
a r e  produced by increasing the porosity is dramat- 
ically illustrated by comparing the temperature for 
the 1.43, 2.08, and 2 .98  points and 1.00 point at 
5.62 km/sec. These states were created by the same 
impact velocity. The fact that there i s  a discontinuity 

5. 

4 

3 

I 

4 

c- 
E 

n. 
- 

2. 

1. 

0 
1 2 3 4 5 6, 7 I 9 10 11 12 13 14 15 

Y (lu/uc) 

Figure 11. P-u plots comparing computed results 
with experimental data points. (No abrupt change i s  

apparent that would indicate a phase transition. ) 
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TABLE I. SUMMARY O F  HUGONIOT DATA FOR ALUMINUM 

2.319 

I. 700 

D (km/sec) 

7.531 

6.927 

6.500 

D (km/sec) 

9. 13 

10.39 

12.94 

222.7 

153.5 

v00/v300 

1. 00 

1.43 

2.08 

2.98 

693 

1042 

1971 

GROUP Ia 

1.442 

I. 553 

1.767 

uf (km/sec) 

3.230 

2. 185 

I. 498 

1. 176 

1.015 

335.8 

9. 93 

6.25 

6.74 

7.18 

u ( k d s e c )  

2.80 

3.70 

5.62 

D ( k i d s e c )  

18.31 -t . 16 

11.74 -I- . 10 

11.42 -t .09 

10.75 t .08 

v/vo 

0.7874 

0.8333 

0.8696 

P(kb) I Vo/V 

GROUP 111' 

P(Mb) 

4.93 

1 .391 

I. 003 

0.702 
~ 

aThese a r e  reprcsentative points of those listed by J. M. Walsh, 
M .  H .  Rice, R. G. McQueen, and F. L .  Parger, Phys. Rev.; 108, 
196 ( 1957) The Material velocity u i s  taken to be 1/2 the measured 
free surface velocity, u 

f '  

bL. V. Al'tshuler, S. B .  Kormer, A .  A. Bakanova, and R.  F. Trunin; 
Soviet Physics - JETP,  fi, 573 (1962) 

'S. B. Kormer, A. I. Funtikov, V. D.  Urlin, and A. N. Kiksnikova, 
Soviet Physics - JETP,  5 477 ( 1962) 

dThe quantity u was not stated in  the paper. I t  was recovered by the 
relation u = [ 1 - (V/Vo) ( V3oo/VoO) I D. 

L 
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Figure 12. T-u plots. (The data points a re  shown 
only to indicate range of temperatures reached by 

present experimental techniques. The break in the 
curves indicates that temperature measurement 

could serve as  a method of detecting 
phase transitions. ) 

in the temperature curve at the melting region gives 
a possibility of experimentally detecting the melting 
point at very high pressures, although such temper- 
ature measurement would be extremely difficult to 
make in solids. 

Figure 13 is a plot of entropy as  a function of u . ,  
A s  before, the indicated data points a re  intended only 
to indicate range of experimental states, not measure- 
ments. For comparison, the temperature and phase 
of aluminum at ambient pressure for various values 
of entropy i s  indicated. Assuming the release is 
adiabatic and isentropic, an estimate of the release 
temperature can be made. Attempts have been made 
to measure the release temperature of shock 
compressed solids. Taylor [ 131 reports a favorable 

48 

44 
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36 

32 - 
u - 

28 L 

Z 24 
0 2 

20 

16 

12 

8 

4 1  

A Walsh, e t  01. 
0 Al'tshuler, et al. 

o Kormer, e t  01. 

_ _ - - _ _ _  
Complete Melting 

- - 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  
u(km/sec)  

Figure 13. S-u plots. (The data points indicate 
measurement range rather than actual 

measurements. The dashed lines indicate entropy 
values corresponding to the stated temperatures at 
ambient pressure. If the release i s  assumed to be 
isentropic, these can be used to indicate release 

temperature. 

comparison between calculated and measured release 
temperatures for Cu up to the melting point. 

CONCLUSIONS 

A complete equation of state for metals that 
describes both the solid and liquid-dense vapor phase 
has  been developed. All empirical constants required 
can be obtained from elementary thermodynamic data 
at ambient conditions. Since all thermodynamic 
functions a r e  derived from the partition function, 
thermodynamic consistency is guaranteed. Phase 
transitions between the solid and liquid come about 
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naturally by  using the Gibbs energy to determine the 
stable phase for a given state. Detailed computations 
were carried out fo r  aluminum and the ability for the 
model to predict the behavior of aluminum for 
pressures of 5 Mb and temperatures of 20 000°K was  
demonstrated. Since only elementary thermodynamic 
data at ambient conditions a r e  required to configure 
the model, extension to other metals is straight- 
forward by insertion of their appropriate constants. 

The model can be extended to higher temperatures 
with some additional computational effort to obtain 
the electron contributions for temperatures com- 
parable to the Fermi temperature. The model can 
also be extended to  lower densities, provided the 
temperatures a r e  low enough to completely neglect 
electronic contributions. 
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